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two-dimensional lattice diffusion 
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Received 9 November 1592. i n  final form 9 February 1993 

Abstract NMR magnetic dipolar spectral densily funclions are obtained for some lattice diffusion 
models for two-dimensional lattice diffusion and compared with the results for the BPP and 
continuum models. The systems considered are dipolar interactions between spins diffusing 
in a plane, and interactions between diffusing spins in a plane with fixed spins in a separate 
parallel plane. Numerical results and anal@ approximations are obtained for spins diffusing 
on square lattices. The BPP model is unsatisfactory in both magnilude and functional form in 
two-dimensional systems. The continuum and lanice diffusion models agree for interactions 
behveen well separaled planes, but ulere are significant differences betwm the wntinuum and 
lattice models ohenvise. Results for the longitudinal spin relaxation rates in the laboratory and 
rotating frames are obtained for square lattices, and show a shung dependence OD the direction 
of the applied magnetic field relative to lhe crystal axes. 

1. Introduction 

The theory of nuclear spin relaxation due to fluctuating magnetic dipolar interactions 
involves, in the weak-collision limit, spectral density functions, which depend on the nature 
of the fluctuations. If the time dependence of the dipolar interactions is due to translational 
diffusion of the spins it is well known that the functional form of the spectral density 
functions depends on the dimensionality of the system (see, for example, Sholl 1981), 
especially in the rapid-diffusion limit corresponding to high temperatures or low resonant 
frequencies. In the case of interacting spins undergoing two-dimensional diffusion in a 
plane the spectral density functions depend on the frequency o according to log(l/o) in 
the low-frequency limit under very general conditions. 

The evaluation of the spectral density functions for two-dimensional systems has been 
considered for continuum diffusion models by Avogadro and Villa (1977) and Korb et a1 
(1983, 1984, 1987b) for the case where the dipolar interactions are all in a plane. The 
extension of this theory to the diffusing spins in a plane interacting with spins in a separate 
parallel plane has been treated by Korb et a1 (1987a) and Neue (1988). The continuum 
diffusion models are appropriate for systems in which the mobile spins behave like two- 
dimensional liquids, but may not be good approximations for spins undergoing diffusion on 
a lattice. The high-frequency form of the spectral density functions for spins diffusing on 
square and hexagonal lattices has been derived by MacGillivray and Sholl (19851, b) but 
there are no results available for discrete lattice diffusion over the entire frequency range. 

The aim of the present work is to calculate the spectral density functions and nuclear 
spin relaxation rates over the complete frequency range for some lattice diffusion models 
and to compare the results to those for continuum diffusion models and the BPP model 
(Bloembergen et al 1948). The general theory is developed for arbitrary two-dimensional 
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smctures and is applied specifically to the case of a square lattice. The cases of spins 
interacting with each other in the same plane and of spins in one plane interacting with 
spins in a separate parallel plane are both considered. The form of the dependence of the 
spectral density functions and relaxation rates on the direction of the applied magnetic field 
relative to the crystal axes is more involved for the square lattice than for the continuum 
model, and results for this angular dependence are presented. 

P C L Stephenson and C A ShoN 

2. Spectral density functions 

The spectral density functions relevant to nuclear spin relaxation due to magnetic dipolar 
interactions, for both like- and unlike-spin interactions, are (Abragam 1961, Sholl 1981) 

where d,’ = 16~15, d: = 8 ~ / 1 5 ,  di  = 32~115. Y,,(a’) are spherical harmonics normalized 
to unity, T ,  = (Tar a&) are vectors separating the interacting spins and c is the probability 
of finding a spin at T@ relative to one at the origin. The function P (re, ‘ 8 .  U )  is the Fourier 
transform 

of P ( T ~ ,  T B ,  t ) ,  which is the probability of a pair of spins being separated by TS a time f 
after they were separated by T ~ .  The directions of the spherical harmonics are relative 
to the direction of the applied magnetic field 

The dependence of J‘P’(o) on the orientation of the crystal with respect to the magnetic 
field direction can be expressed, in terms of trigonometric functions of the polar angles (e, $) 
of the field direction relative to crystal axes and functions Jpp.(o) defined for p and p‘ = -2 
to 2, by (Sholl 1986) 

where the directions of the spherical harmonics are now relative to axes fixed in the crystal. 
The z direction will be chosen to be the normal to the plane of the diffusing spins. 

The maximum number of independent non-zero parameters needed to specify J ( P 1 ( o )  
for each frequency is 15, and crystal symmetry reduces this number (Sholl 1986). If the z 
axis is a sixfold rotation axis, or if there is circular symmetry about the z axis, as is the 
case for a continuum diffusion model, only the three (real) diagonal elements of JPp’(o) are. 
non-zero and J‘P’(w) depends only on 6 according to 
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If the z axis is a threefold or fourfold rotation axis J(P'(w) also depends on q5, and there 
are additional terms to (4) given by 

3 0 ,  sin3ecose 8t(e3i4J?12) threefold axis (7) 

$ Dp sin4 0 %(e4" JfZz) fourfold axis (8) 
where Do = 1, D I  = -$ and D2 = 1. 

The number of independent (real) parameters is therefore three for a sixfold rotation 
axis or circular symmetry, and five for a threefold or fourfold rotation axis. If the dipolar 
interactions are restricted to the plane of diffusion. JII and J-12 are zero because the 
spherical harmonics in (3) become zero. There are then only two parameters, (Jw. Ju), 
for threefold or sixfold rotation axes, and four parameters, (Jw,  522. complex J-U), for a 
fourfold rotation axis. These results for the continuum diffusion in a plane are consistent 
with the angular expressions of Avogadro and Vila (1977) and the results for a fourfold 
axis are consistent with the case q5 = 0 considered by MacGillivray and Sholl (1985a). (In 
equation (3.7) in the latter paper, fio'(S) should be sin4B.) 

The spherical average over all magnetic field directions (J@)(m))  of the spectral density 
functions in all cases is 

2 
6 

(9) 

A circular average about the z axis gives the expression in (4) in all cases, since the 
additional terms (7) and (8) average to zero. 

Since the relaxation rates are linear combinations of the spectral density functions 
(Abragam 1961) the relaxation rates have the same functional f m  as J(p) (w)  for their 
orientation dependence on the magnetic field direction, and this is also the case for the 
appropriate averages over magnetic field directions. 

In  the weakcollision limit the experimentally measurable relaxation rates can be written 
as linear combinations of the spectral density functions J'P'(o). For example, for likespin 
dipolar interactions the longitudinal relaxation rates, R I  and R I ,  in the laboratoly and 
rotating frames, respectively, are (see, for example, Kelly and Sholl 1992) 

(J (" (o) )  4 7 ( J w  + 2511 + 2Ju). 

RI = 4C[J"'(w,3) + J'2'(2mo)] 

R I ,  = C[J'0'(201) + lOJ"'(o0) + J n ' ( ~ ) ]  
(10) 

(11) 

where C = iy4f i21(1 + 1) (p4/4n)2, y is the gyromagnetic ratio of the nuclear spin with 
spin quantum number I, and WO and 01 are the Larmor frequencies of the spins in the 
applied static and oscillating magnetic fields, respectively. The spectral density functions 
J(P'(m) are expressed in terms of J,,tp'(w) by (4)-(8), and the Jpp~(o) are defined relative 
to the crystal axes by (3).  

It is convenient to discuss and present the results in terms of the dimensionless function 
g,,,(wr), which is related to J,,.(m) by 

Jpp,(m) = crsppf ~ p p , ( w r )  (12) 
where T is a characteristic correlation time of the diffusion, which is discussed in section 3, 
and Spp, is the lattice summation 

The values of Sppr depend only on the geometry of the spin system, and values are given 
in section 4. 
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3. Diffusion models 

The systems to be considered a~ spins diffusing on two-dimensional lattices by random 
jumps to vacant nearest-neighbour lattice sites. The dipolar interaction may be between like 
spins undergoing relative diffusion on the same lattice, or between unlike spins where the 
dipolar interaction is between a diffusing spin in a plane and a lattice of fixed spins in the 
same plane or another parallel plane or planes. For unlike-spin interactions the probability 
function P ( r a .  rp. t) will be of the form 

P C L Stephenson and C A Sholl 

P(~'u, TB, t )  = p ( r u  - rsTt) (14) 

if the fixed spins do not influence the diffusion of the moving spins. This is not the case for 
the relative diffusion of like spins on the same lattice, since each of a pair of diffusing spins 
will then interfere with the diffusion of the other, even in the limit of low spin concentration 
on the lattice corresponding to just two spins. 

3.1, EPP model 

The BPP model for the spectral density functions is based on an approximation for 
P ( r a ,  rp, I)  that corresponds to the pair of spins maintaining their relative separation for 
a mean time r and assuming that the correlation in their dipolar interaction is completely 
destroyed when a jump of one of the spins occurs. It is therefore equivalent to choosing 
P(ru ,  rp, t )  to be 8,s exp(-t/r). The parameter r is r, for the unlike-spin case, where 
only one spin is mobile, with a mean time of r, between jumps, and is rJ2 when either spin 
can jump, as in the like-spin case. The resulting dimensionless spectral density functions 
gPp,(or) for the BPP model are zero if Spp, = 0, and otherwise are 

which are independent of p ,  p', the crystal sbucture and any microscopic details of the 
diffusion process other than r .  This model is widely used in analysing nuclear spin relaxation 
data. 

3.2. Continuum model 

In the limit of large distances and long times the lattice diffusion may be described by the 
continuum diffusion expression in two-dimensions, which is 

where the diffusion constant D is related to the lattice diffusion by D = aa/(4rc), where 
a' is the mean-square jump length and r, is the mean time between jumps of a spin. This 
is the model considered by Neue (1988) for interactions between unlike spins, where one 
of the two spin types is k e d  while the other diffuses on a second plane a distance z from 
the first. The resulting spectral density functions can be written in the form 



Spectral density functions for two-dimensional diffusion 2813 

where n is the surface density of lattice sites and r, is a parameter with the dimensions of 
time defined by 

The parameter r in these expressions is rc if only one spin is diffusing, and becomes rC/2 
if both spins are diffusing. In the limit of large or, (on2 -+ w), C(or,) = 5/[6(0r , )~]  
so that 

in this limit. For small values of orr (orzZ << 1 )  the Jpp(w) are linear in or and 

The expression (17) diverges as z + 0 since the model then allows the unphysical 
condition that the two interacting spins can occupy the same site. An approximation for 
z = 0 that overcomes this difficulty is to limit the starting and finishing separations of the 
spins to regions outside circles of radius d .  A similar analysis to Neue then gives (Avogadro 
and Villa 1977) 

where Ao = 5/4, A+, = 0, AM = 15/8, r D  = 4td2/a2 and the Jlpl(y) areBessel functions. 
The parameter r is again r, for one spin diffusing and r,/2 for both spins diffusing. More 
sophisticated continuum diffusion models have been considered by Korb eta1 (1983, 1984. 
1987a. b, 1990). 

3.3. Random walk model 

A general approach to evaluating the spectral density functions for discrete lattice diffusion 
is to use a reciprocal space formalism (Fedders and Sankey 1978, Barton and Sholl 1980) 
in which 

where the integrals are over the first Brillouin zone of the two-dimensional reciprocal lattice, 
A is the area of the two-dimensional unit cell, P(p. 9'. o) is the temporal and spatial Fourier 
transform of P (re, TD,  f) and 
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where re*= 1 + j + z&. The vectors 1 are two-dimensional lattice vectors (in the x y  plane) 
and j +zk is the relative displacement of a planar lattice of fixed spins from the planar lattice 
of diffusing spins, where z is the separation between the planes and j is a planar vector 
characterizing the relative displacement of the lattices parallel to the planes. For like-spin 
dipolar interactions in a plane, j and z are both zero and the term 1 = 0 must be omitted 
from the summation in (25). An efficient method of evaluating lattice summations of the 
form of Tp(q. j ,  z) is to use the Poisson summation formula (Barton and Sholl 1980) and 
the resulting expressions for the two-dimensional summations are given in the appendix. 
A particular lanice diffusion model will determine P ( q ,  q', U),  and Jpp,(o) can then be 
evaluated using (24) and the expressions in the appendix. The symmetry of the calculated 
JPp,(o) will be as discussed in section 2. 

A simple model of the diffusion of a spin is that it follows a random walk with a 
mean time of rc between jumps. Random walk theory (Barber and Ninham 1970) and 
equation (14) then give the expression 

P C L Stephenson and C A Sholl 

where r = tc for one spin diffusing and r = rc/2 for both spins diffusing, @(q)  is the 
lattice structure factor, defined by 

and WI is the probability that the jump of a spin from the origin will be to ri. For nearest- 
neighbour jumps on a square lattice with lattice parameter a 

In the limit of small 0 7 ,  which corresponds to long-range diffusion, and as z -+ 00 in such 
a way that wrz2 + 0, the spectral density functions of the random walk and the continuum 
models are equal. In these limits, (21) for the continuum model of diffusion is also valid 
for the random walk model. 

If a fraction c of the lattice sites are occupied by diffusing spins the mean time r, 
between jumps of a spin is ro/(l- c), where ro is the mean time between jumps of a spin if 
it is the only spin on the lattice. For unlike-spin dipolar interactions between fixed spins and 
diffusing spins the random walk model is exact in the limit c + 0 and will be a reasonable 
approximation at other concentrations, except in the limit c + 1 since the diffusion is then 
controlled by the random walks of vacancies. In three dimensions the encounter model 
(Wolf 1979, MacGillivray and Sholl 1986, Sholl 1992) is then valid, but this will not be 
applicable to twodimensional systems. This is because an encounter cannot then be defined 
and Brummelhuis and Hilhorst (1989) have recently analysed the random walk theory for 
the limit of c + 1 in two-dimensional systems. 

3.4. Mean field model 

The random walk model for like-spin dipolar interactions between two spins diffusing on 
the same lattice allows the unphysical possibility of the pair of spins both occupying the 
same site and therefore requires exclusion of the term 1 = 0 in expression (25). It is 
therefore not rigorously correct even in the limit c --f 0. An improved theory, which will 
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be referred to as the mean field model, is to rigorously take into account the siteblocking 
effects of the two spins, but to take the effects of the other spins into account only through 
the mean time 5, between jumps, as for the random walk model. This mean field model 
will again not be valid in the limit c + 1, but is exact in the limit c -+ 0. The results 
of a comparison between the random walk and mean field models for the spectral density 
functions in cubic crystals (Barton and Sholl 1980) suggested that the difference between 
the results for these models increases as the lattice coordination number decreases. It would 
therefore be expected that the difference between the JlP)(w) for the two models would be 
significant for planar systems, which can have low coordination numbers. 

The evaluation of P ( q ,  q‘, o) for the mean field model in two dimensions is similar to 
that in three dimensions (Barton and Sholl 1980). Fourier transforming the rate equation 
for P(ra ,  rp.  i) gives an integral equation for P ( q ,  q‘, w)  and the solution of this equation 
for a square lattice is (Stephenson 1993) 

dqdo(q ,u) (2-4cosqia+cos2q~a+cosq~acosqza)  
4Yr2 

dqdo(q,w)(cos2qla - cosqlacosq~a) 

where r = rJ2 and the integrals in the above expressions for the &(w) are over the first 
Brillouin zone of the two-dimensional reciprocal lattice. The spectral density functions for 
the mean field model are then obtained from (24) and (25). 

4. Results 

Some numerical results are presented below for the spectral density functions and relaxation 
rates for diffusion on a square lattice. The spectral density functions J,,+J) ate related to 
their dimensionless forms gpp’(wr) by (12). and the values of the lattice summations Spp, 
for square lattices are given in table 1. For simplicity, the only cases to be considered are 
unlike-spin dipolar interactions between diffusing spins in one plane and fixed spins in a 
parallel plane, where the planes are separated by z z 0, and like-spin dipolar interactions 
between spins diffusing in the same plane. Other similar l i e -  and unlike-spin examples, 
including systems for which j ,  the relative displacement of the planes parallel to the planes, 
is non-zero are easily calculated and show similar qualitative features but are not considered 
here. 
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Table 1. Values of h e  lattice summations Sppr, defiwd by (13). for a square lattice and for 
z = 0. a and loa where a is lhe lattice parameter. 

r = O  z = a  z =  loa 
dSw 0.4634 0.4132 2.3M x IO-' 
a6SII 0.0 0.1015 1.562 x IO-' 
a6Sn 0.6951 0.03851 3.905 x 
a's-% 0.5286 0.01070 -3.7Wx 

UT 

Figure 1. The functions gp@(or)  for the random walk and BPP models for dipolar interactions 
belween diffusing spins and fixed spins on square lanices separated by I = 100. The BPP RSUIU 
we independent of p and p'. The broken curve for smal l  or shows the limiting linear form of 
g,,(or) for the random walk model. 

4.1. Separate planes 

The non-zero independent spectral density functions for square lattices with z > 0 and 
j = 0 are g,(os) for p = 0, I ,  2 and the real part of g-&z). These functions are shown 
in figure 1 for z = loa for the BPP and random walk models. The random walk results 
for gpp((OT) are the same for p = 0, 1,2 to within 0.04% for this value of z .  All of the 
functions are proportional to (or)-' for large 05, as a result of this limit depending only 
on the details of the probabilities of no jump or one jump of a spin occurring in a time 
f .  The range of OJT over which this limit is valid is, however, very different for the BPP 
and random walk models and increases with increasing z for the random walk model. This 
result is a consequence of the assumption in the BPP model that the correlation in dipolar 
interactions is completely destroyed when a jump of a spin occurs. This becomes a poor 
approximation for large z because the jump of a spin then only involves a small change in 
the dipolar interaction between the spins and the random walk model includes the effect of 
this change correctly. The maxima in the relaxation rates occur at much smaller values of 
WT for the random walk model than for the BPP model as z increases, as a result of this 
difference between the models. The BPp model is also clearly a poor approximation, both 
in magnitude and in functional form, in the small or region and in the important range of 
OT corresponding to the vicinity of the maxima in the relaxation rates. 

The results for the continuum diffusion model are not shown in figure 1, but agree with 
the random walk results to within 0.7% for g p p ( o T )  over the range of U T  shown. The 
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function g-zz(or)  is related to the angular dependence of the spectral density functions on 
the azimuthal angle 4, as discussed in section 2, and it is zero for the continuum model but 
not for the random walk model. 

The corresponding spectral density functions are shown for the case z = a in figure 2 
for the random walk and continuum models. The BPP results are not shown, but are the 
same as in figure 1 since they are independent of z. The magnitude of the BPP results are 
now comparable to the other models but the functional form is still quite different at small 
wr. The results for the random walk model show significant differences from those of the 
continuum model, unlike the case for z = loa. 

The general conclusions are therefore that the B W  model is unsatisfactory for these 
systems and that the continuum model is a good approximation for gpp(wr) for large z. This 
latter result is expected since the details of the lattice structure will become less important 
as z increases. Lattice diffusion models such as the random walk model are, however, 
necessary for small z and for calculating g-zz (or)  since this is zero for a continuum model. 

4.2. Single plane 

For like-spin interactions between spins diffusing in the same plane ( z  = 0) the function 
gtt(or) = 0 and the functions gW(wr),  g&r) and g-u(wr)  are shown in figures 3 
and 4 for the BPP, random walk, mean field and continuum models. The BPP model is 
again an unsatisfactory approximation, especially in the small or  limit, where it becomes 
constant. As shown in figure 3, all the other models show In(l/or) behaviour for gm(wr) 
in this limit, although their magnitudes can be significantly different from each other. The 
remaining independent gpp,(wr) do not diverge at wr = 0 but intersect the wr = 0 axis 
with finite slope, as shown in figure 4. In the case of gzz(wT), which is linear in or in the 
low-frequency limit, this slope is non-zero for all but the BPP model. The slope of g-U(or)  
at o r  = 0 is zero. 

These results show that the precise details of the diffusion model are quite important 
for z = 0, with the more rigorous mean field results showing appreciable differences to 
those for the random walk model and especially to those for the continuum model. The 
percentage difference between the spectral density functions for the random walk and mean 

8 .  

0.0 0.5 1.0 

- - - - _ _  - - _  - - - _ _  
- - - - - - - - _ _ _ _ _ _ _ _ _  
I 

1.0 
0 
0.0 0.5 

UT 

Fwre 2. The functions zp@(wr) for the random walk (-) and mntinuum (- - -) models 
for dipolar interactions between diffusing spins and fixed spins on square lallices separated by 
z = a .  Re function g-n(or) is zero for the continuum model. 
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ccntinuum 

random walk 

0' 
UT 

Figure 3. The function gw(or) for the Bw, random walk, mean field and continuum models 
for interactions between spins diffusing on a square laltice (2 = 0). The approach of the mean 
field and continuum models lo the In(l/or) limit for small or is shown in the inset 

A '  
6 1  I 

mean field 

4 

2 - 

continuum ----L- 
0 I 

0.0 0.5 1.0 
UT 

Figure 4. The functions g&m) and g-&or) for the same system as in figure 3. 

field models becomes constant at both small and large or. It is interesting to note that the 
numerical calculations are easier to compute to a given accuracy over a wide range of or 
for the more realistic mean field model than is the case for the continuum model. 

Analytic approximations for the numerical results can be exwmely useful (Sholl 1988) 
and the following functions have been found to fit the mean field results to good accuracy. 
The functions g ~ ( w r )  and g-n(wt )  over the entire range of or and g W ( o r )  for or 2 1.0 
may be approximated by 

where the values of the parameters and the accuracy of the approximations are given in 
table 2. 
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Table 2. Parameters for thc analytic approxhations io Ihe mean field specVal density fhcti0n.S. 

g w ( W  gzz(or) g-zz(W 

S 0.7577 1.3858 1.3377 
n 0.25 0.3791 0.3869 
b 0.0 0.3905 0.0 
c 0.4(328 -0.1879 0.4210 
d -0.0632 0.0268 -0.2783 
U 0.80 1.50 1.11 
" 1.40 1.80 1.30 
Maximum emr  0.8% 1.1% 1.0% 

A different functional form is required for g W ( o r )  for or  e 1.0, and the results can 
be described by 

11.1501n(29.81or) 
[l - 17.98(or)0.87] g d 4  = - 

for o r  6 0.015 accurate to within 0.6%. For 0.015 < o r  < 2.5 

where x = loglo(20r) and is also accurate to within 0.6%. and where the coefficients A. 
are 

AD = 0.2997 A1 = -0.1349 A2 = -0.2464 
A3 = 0.0490 & = 0.1 145 As = 0.0306. 

The low-frequency limit of -1 1.1501n(29.81or) forthe mean field model may be compared 
with -5.395 ln(62.55wr) for the continuum model. The appreciable difference between 
these forms is shown in the inset of figure 3. The low-frequency limits for the remaining 
independent spectral density functions for the mean field theory are 3.66 - 5 z o r / 2 a 6 S ~  
for ga(or)  and 3.46 for g-zz(or). 

As for the case of z > 0, the BPP model is again unsatisfactory. The continuum model 
shows the correct functional form in the smallwr limit, but the magnitude is significantly 
in error and again gives g-az(or) = 0. The lattice models are therefore necesary to give 
accurate results and also to give non-zero values of g-&ot), and the mean field model is 
the most physically realistic of the models considered. 

4 3 .  Relaxation rates 

The longitudinal relaxation rates R I  and R I ,  are linear combinations of spectral density 
functions and are given by equations (IO) and (11). The relaxation rates are dimensionless 
functions of oor and o I r  when expressed in units of 4?rCc/15@a6, and plots of the 
relaxation rates in these units are shown in figures 5 and 6 for the BPP and mean field models 
and various magnetic field orientations for like-spin interactions between spins diffusing on 
a square lattice (z = 0, j = 0, r = rJ2) and for o1 = w0/103. If the mean time re between 
jumps depended on the temperature T according to an Arrhenius relation, the relaxation 
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0 0 7 C  

Figure 5. The relaation rates RI and RI, as Functions o f m ~  for interactions between spins 
diffusing on a quare lattice. The results are for the magnetic field direction normal lo the 
plane. The long-dash broken curves “spond to the low-frequency limits in section 4 2  and 
the high-frequency approximation of MacGillimy and Sholl (1985b). 

00T. 

Figure 6. Tk mean field model results for some magnetic field directions different lo those on 
figure 5. 

rates plotted as functions of log(wr,) would correspond to experimental relaxation rates 
plotted as functions of 1 / T .  

Figure 5 shows the results for the BPP and mean field theories for the magnetic field 
direction oriented normal to the plane of spins. The form of the relaxation rates at large 
0 7  (corresponding to high frequencies or low temperatures) is propoltional to (or)-’ ,  but 
there is a difference in magnitude between the models of 1.4 for RI and 2.6 for RI, in this 
limit. In the low-frequency (high-temperature) limit the BPP results are proportional to 0 7  

for all magnetic field orientations, but this is true for the mean field model only far R I  and 
if the magnetic field is normal to the plane of the spins, as in figure S. This is because, 
in this case, RI depends only on g*tp(07), which do not show logarithmic behaviour for 
small oz. In all other cases the relaxation rates are not proportional to 07 for small or 
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because the relaxation rates then depend on gm(wr), which shows logarithmic behaviour 
in this limit. 

The relaxation rates for the mean field theory are shown in figure 6 for three different 
orientations of the magnetic field direction. There are significant differences between the 
results for different field directions at all values of mor,. The minimum and maximum 
values of the R I  maximum for any field direction are 2.17 (in units of 4nCc/15m&') at 
B = 90". 4 = 0" and 5.16 at B = 0' respectively. The corresponding results for R I ,  are 
123 at 0 = 50". 4 = 45" and 2770 at 8 = 90". 4 = 0". 

The values of mor, and m ~ r ,  at which the RI and R I ,  maxima occur are especially 
important parameters, since they can provide directly a value of r, at the temperature for 
which the maximum relaxation rate occurs. The values of wr, for which the RI maxima 
occur are given as a function of magnetic field orientation for the BPP and mean field theories 
in figure. 7 for the range of angles sufficient to specify the results for any orientation. It can 
be seen that the variation with 8, @ is similar for the two models, but that the magnitudes 
are different. The comparable results for the mean field theory are given in figure 8 for the 
R I ,  maximum. The corresponding BPP results are not shown, but vary by only 0.02% over 
the entire range of B and 4 and the value is 1.0. Also shown in figures 7 and 8 are the 
results for a circular average about the direction normal to the plane. The anisotropy of the 
position of the maxima is therefore quite different between the models for R I ,  compared 
with R I .  These results again show the inadequacy of the BPP model for two-dimensional 
systems. 
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Figure 7. The values of 00% al which the maxima of RI occur as functions of the angles 8.0 
of the magnetic field direction relative U, the crystal axis. 

5. Discussion 

The functional form of the dependence of the spectral density functions as a function of the 
orientation of the magnetic field direction relative to the crystal axes has been obtained for 
dipole interactions between spins undergoing discrete lattice diffusion on separate parallel 
planes and for interactions between spins diffusing in a plane. The details of the reciprocal 
space formulation for evaluating the spectral density functions for two-dimensional lattice 
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Figure 8. The values of olri at which the maxima of RI, occur as functions of the mapetic 
field direction 

diffusion have been developed and applied to the random walk and mean field models for 
diffusion on a square lattice. 

The results from the random walk and mean field models have been compared with 
the results from the BW and continuum models. The BW model is quite unsuitable for 
two-dimensional diffusion since it gives the incorrect Functional form for the relaxation 
rates in the low-frequency (high-temperature) limit and can also give significant differences 
in the magnitudes of the spectral density functions and relaxation rates from the more 
detailed lattice diffusion models. The continuum model is quite satisfactory, as would be 
expected physically, for interactions between well separated planes, but is less accurate for 
interactions between spins diffusing in a single plane. The lattice diffusion models are also 
necessary to calculate the dependence of the spectral density Functions on the azimuthal 
angle between the magnetic field direction and the normal to the plane. 

In the case of interactions in a single plane, the mean field model is exact in the limit 
of low spin concentrations and an accurate analytic approximation has been obtained for 
the spectra1 density functions for diffusion on a square lattice. These results should also 
be a good approximation for other spin concentrations that am not too large. The mean 
field model is a reasonable approximation for threedimensional systems unless the spin 
concentration approaches unity (Faux er al 1986). The range of spin concentrations over 
which the mean field model is valid might. however, be less for two-dimensional diffusion 
since the three-dimensional encounter model for high spin concentrations is not valid for 
two-dimensional diffusion, 

While the functional form of the spectral density functions and relaxation rates in the 
high-frequency limit is similar for lattice diffusion models in one. two or three dimensions, 
this is not the case for the low-frequency limit For example, anisotropic diffusion models in 
three-dimensional hexagonal ciystals (Sholl 1987) showed significant differences behveen 
the results for one-, two- and thrmdimensional diffusion. The spectral density functions 
for interactions in a plane show the In(l/ot) behaviour as WT + 0, but this limit is only 
approached for values of WT corresponding to relaxation rates well below the maximum 
rate and might therefore be difficult to observe experimentally. 

The relaxation rates for two-dimensional diffusion show a much stronger dependence on 
magnetic field direction than is the case for three-dimensional cubic systems. An interesting 
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consequence of this dependence on magnetic field direction is that the magnetization 
recoveries show non-exponential behaviour at long times for polycrystalline samples (Barton 
and Sholl 1976). The stronger dependence on the field direction in two-dimensional systems 
would mean that the non-exponential magnetization recoveries would be observed at shorter 
times. 

The general analysis of two-dimensional systems developed above can be easily 
extended to other lattices and other like- and unlike-spin planar systems. 

Appendix. Ransformation of Tp(g,  j ,  z )  

The function Tp(qrj, z )  is defined by 

where cm are the vectors 1 + j + zk. In terms of basis vecton al. a2 where la11 =a,  and 
two-dimensional reciprocal lanice vectors bl, h defined by ai bj = a&, the vectors T~ 

and g are 

c, = zk + j + 1 = zk + ( j l a ~  + jzad + (AI a1 + had 

q = (qibi + 424).  (A3) 

The summation over 1 in (AI) then corresponds to AI  and A2 summed over integers from 
-03 to 03. This two-dimensional sum can be transformed into a sum over two-dimensional 
reciprocal lattice coordinates P I ,  pz by using the Poisson summation formula in a similar 
way to the case q = 0 considered by Sholl (1966). For p 

r , (q . j .  2 )  = A, 2 F, (P~.  Pz. j i 9  L Z ) ~ ~ , . ~ ~  exp[-~(z/a)f,,,,~ 

where 

0 the result is 

(A4) 
PI.P1=-m 

( 
4rrz(-i)p 

' - ala1 x U Z ~  4n(2 - p) ! (2+  p)!  

F,(PI, PZ. j t ,  jz)  = expUIpo,,,,, - W ~ I P I  + ~ Z P Z ) ~ }  

A -  

fNi.m =I(PI + W I ) ~ I  + ( P z + ~ P L ) ~ ~  

where a b  = a1 .a2/a2, azY = ,/I - U &  and q = 2np.  The values of Tp(q, j ,  z )  for p < 0 
can be obtained from 
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The expression (A4) is not valid for z = 0. In this case the transformation can be made 
to a rapidly converging form by using an auxiliary function (Nijboer and DeWette 1957). 
The results are 

where the prime on the summation over AI, A2 denotes the exclusion of the AI  = A2 = 0 
term when j = 0, and the prime on the summation over pI , pz denotes the exclusion of the 
p1 = p2 = 0 term if q = 0, and where u ~ j  is the projection of the vector r, onto the xy 
plane; i.e. uAj = r, - z k  = I + j .  The term r(x, xua)  is the incomplete gamma function. 
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